首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   443篇
  免费   17篇
  国内免费   7篇
测绘学   7篇
大气科学   43篇
地球物理   89篇
地质学   170篇
海洋学   23篇
天文学   97篇
自然地理   38篇
  2022年   4篇
  2021年   4篇
  2020年   5篇
  2019年   4篇
  2018年   16篇
  2017年   12篇
  2016年   7篇
  2015年   10篇
  2014年   11篇
  2013年   35篇
  2012年   13篇
  2011年   21篇
  2010年   11篇
  2009年   19篇
  2008年   20篇
  2007年   13篇
  2006年   12篇
  2005年   14篇
  2004年   16篇
  2003年   13篇
  2002年   11篇
  2001年   9篇
  2000年   7篇
  1999年   8篇
  1998年   4篇
  1997年   7篇
  1996年   10篇
  1995年   5篇
  1994年   7篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   4篇
  1987年   10篇
  1986年   9篇
  1985年   6篇
  1984年   10篇
  1983年   7篇
  1982年   8篇
  1981年   9篇
  1980年   9篇
  1979年   7篇
  1978年   6篇
  1977年   7篇
  1976年   3篇
  1975年   4篇
  1974年   5篇
  1973年   6篇
  1971年   6篇
  1969年   2篇
排序方式: 共有467条查询结果,搜索用时 15 毫秒
31.
A mathematical model has been developed to represent the physical phenomena that occur during the desiccation and one-dimensional consolidation of successive layers of hydraulically transported sediments as they are periodically deposited in a containment area. The governing boundary value problem, defined in terms of pore water pressures, consists of two field equations (one for the saturated domain and one for the unsaturated domain), a drainage boundary condition, an evapotranspiration boundary condition and a series of continuity conditions at the interfaces between different layers. A number of simplifying assumptions were made to render the field equations tractable, and a step-by-step numerical procedure was used to solve the linearized boundary value problem; at the end of each step, the errors introduced by the simplifying assumptions were corrected. Based on a thorough study of the convergence and stability conditions associated with the numerical approximation employed, a system of automatic corrections was incorporated into the computer program to reduce the time increment if stability problems originate during the solution. Based on the results of a parameter study, it was found that, although drainage conditions at the bottom of the, layer do exert some influence on the consolidation rate during deposition of the dredgings, the evapotranspiration potential renders this effect almost negligible when desiccation takes place at the surface. In contrast, transpiration plays an important, role on the consolidation rate during the early stages of desiccation, but its effect is reduced considerably as the water table approaches an equilibrium position.  相似文献   
32.
A two-dimensional numerical model with coupled photochemistry and dynamics has been used to investigate the response of the middle atmosphere (16–116 km) to changes in solar activity over the 11-year solar cycle. Model inputs that vary with solar cycle include solar radiation, cosmic ray and auroral ionization rates and the flux of NOx at the model's upper boundary.In this study, the results of model runs for solar cycle minimum and maximum conditions are compared. In the stratosphere, using currently accepted estimates of changes in solar radiation at wavelengths longer than 180 nm, only small responses in ozone, temperature and zonal winds are obtained. On the other hand, changes at shorter wavelengths, and the effects of particle precipitation, lead to large variations in the abundances of trace species in the thermosphere and upper mesosphere. In particular, very large abundances of NOx are produced above 90 km by auroral particle precipitation. Considerable amounts of NOx are transported subsequently to the stratosphere by the global mean meridional circulation. It is shown that this excess NOx can lead to significant decreases in ozone concentrations at high latitudes and that it may explain observations of nitrate deposition in Antarctic snow.  相似文献   
33.
A series of calculated thermal histories of Mars is presented, and their possible relation to surface tectonic history is discussed. The models include convective heat transport through an empirical approximation, and heating by radioactivity and core segregation. Initial temperature, Ti, and the timing and duration of core segregation are treated as free parameters. Ti is the main determinant of Martian thermal evolution: as it is varied from 20 to 100% of the present mean temperature, the maximum in surface heat flux moves from very recent to very early in Martian history. For the latter cases, the details of core segregation control the detailed timing of a peak in the thermal flux that exceeded 100 mW/m2. It is suggested that the early disruption of cratered terrain crust in the northern hemisphere and subsequent volcanic resurfacing may have been related to core segregation. This would be consistent with a scenario in which an early period of core segregation generated a marked peak in the thermal flux that may have lead to extensivev partial melting and volcanism. This scenario would require Mars to have had an initial mean temperature comparable to the present value.  相似文献   
34.
35.
A study of the asteroid 433 Eros using 3.5 and 12.6 cm radar waves indicates that the surface is very much rougher than any planetary or lunar surface observed by this method. A surface completely covered with sharp edges, pits, subsurface holes, or embedded chunks with scale sizes on the order of our wavelengths seems to be indicated. A model based on a rough rotating triaxial ellipsoid having radii in the rotation equator of 18.6 and 7.9 km agrees well with our data, although a strong wobble in the apparent center frequency of the spectra as rotation progresses indicates that one side may be more reflective than the other, or more likely, that the projected axis of rotation does not equally divide the projected area.  相似文献   
36.
Silicic volcanic deposits (>65 wt% SiO2), which occur as domes, lavas and pyroclastic deposits, are relatively abundant in the Macolod Corridor, SW Luzon, Philippines. At Makiling stratovolcano, silicic domes occur along the margins of the volcano and are chemically similar to the silicic lavas that comprise part of the volcano. Pyroclastic flows are associated with the Laguna de Bay Caldera and these are chemically distinct from the domes and lavas at Makiling stratovolcano. As a whole, samples from the Laguna de Bay Caldera contain lower concentrations of MgO and higher concentrations of Fe2O3(t) than the samples from domes and lavas. The Laguna de Bay samples are more enriched in incompatible trace elements. The silicic rocks from the domes, Makiling Volcano and Laguna de Bay Caldera all contain high alkalis and high K2O/Na2O ratios. Melting experiments of primitive basalts and andesites demonstrate that it is difficult to produce high K2O/Na2O silicic magmas by fractional crystallization or partial melting of a low K2O/Na2O source. However, recent melting experiments (Sisson et al., Contrib Mineral Petrol 148:635–661, 2005) demonstrate that extreme fractional crystallization or partial melting of K-rich basalts can produce these silicic magmas. Our model for the generation of the silicic magmas in the Macolod Corridor requires partial melting of mantle-derived, evolved, moderate to K-rich, crystallized calc-alkaline magmas that ponded and crystallized in the mid-crust. Major and trace element variations, along with oxygen isotopes and ages of the deposits, are consistent with this model. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   
37.
We present and describe in detail the advantages and limitations of a technique that combines in an optimal way model results and proxy-data time series in order to obtain states of the climate system consistent with model physics, reconstruction of past radiative forcing and proxy records. To achieve this goal, we select among an ensemble of simulations covering the last millennium performed with a low-resolution 3-D climate model the ones that minimise a cost function. This cost function measures the misfit between model results and proxy records. In the framework of the tests performed here, an ensemble of 30 to 40 simulations appears sufficient to reach reasonable correlations between model results and reconstructions, in configurations for which a small amount of data is available as well as in data-rich areas. Preliminary applications of the technique show that it can be used to provide reconstructions of past large-scale temperature changes, complementary to the ones obtained by statistical methods. Furthermore, as model results include a representation of atmospheric and oceanic circulations, it can be used to provide insights into some amplification mechanisms responsible for past temperature changes. On the other hand, if the number of proxy records is too low, it could not be used to provide reconstructions of past changes at a regional scale.  相似文献   
38.
New exploration techniques are vital to the search for new orebodies in mature terranes, as well as for extensions of existing orebodies. This research focused on application of low-temperature dating techniques (primarily apatite fission-tracks) and stable isotope measurements (carbon and oxygen in carbonate rocks) in and around the Pipeline deposit, a Carlin-type gold system. The primary purpose of the project was to assess whether these techniques could provide exploration vectors that might be used in conjunction with other geologic, geochemical, and geophysical techniques to determine the locus of fossil hydrothermal fluid flow, and the attendant possibility of finding economic mineral deposits.At Pipeline, measurements of apatite fission-tracks and (U − Th) / He geochronometry yield a clear indication of the elevated temperatures associated with the fossil hydrothermal system. The pattern is one of a central target (Pipeline deposit) with decreasing thermal effects as far as several kilometers laterally from the known ore zone. Because of the irregular nature of fluid flow through fractures, a significant number of samples are required to discern this pattern, but the pattern is quite clear from the 32 samples in and around the Pipeline pit.Stable isotope measurements of carbonate rocks yield patterns centered on the Pipeline pit area. Oxygen isotopes in particular are shifted toward lower values as the result of interaction between the hydrothermal fluids and carbonate rocks. Carbon isotopes show a pattern, but it is somewhat more difficult to interpret than the oxygen isotope pattern. As with the geochronometric patterns, isotopic indications of fluid flow are present several kilometers from the ore zone at Pipeline. Also as with the geochronometric data, a relatively large sample set is required to see the pattern. At Pipeline, the patterns are evident in approximately 45 surface samples and very clearly in the cross-sections containing approximately 100 samples.From these data, it is clear that thermal and stable isotopic measurements on rocks at a significant distance from the known Pipeline hydrothermal system record the passage of hot fluids through the rock. Both techniques provide a footprint of the Pipeline system that is several diameters larger than the ore zone (as presently known). Therefore, thermochronologic and stable isotopic measurements can be utilized in conjunction with other techniques as part of an overall exploration strategy for Carlin-type deposits. Although these techniques do not provide a direct indication of the metal content of the fossil hydrothermal fluids, they do provide an indication of the robustness of fluid flow and the potential size of a hydrothermal system.  相似文献   
39.
A synthesis of previous results, which we dub the “standard model,” provides a prediction as to how isotope fractionation during sulfate reduction should respond to physiological variables such as specific rate of sulfate reduction and environmental variables such as substrate availability and temperature. The standard model suggests that isotope fractionation should decrease with increasing specific rates of sulfate reduction (rate per cell). Furthermore, the standard model predicts that low fractionations should be found at both high and low temperatures whereas the highest fractionations should be found in the intermediate temperature range. These fractionation trends are controlled, as a function of temperature, by the balance between the transfer rates of sulfate into and out of the cell and the exchange between the sulfur pools internal to the organism. We test this standard model by conducting experiments on the growth physiology and isotope fractionation, as a function of temperature, by the sulfate-reducing bacterium Desulfovibrio desulfuricans (DSMZ 642). Our results contrast with the “standard model” by showing a positive correlation between specific rates of sulfate reduction and fractionation. Also by contrast with the standard model, we found the highest fractionations at low and high temperatures and the lowest fractionations in the intermediate temperature range. We develop a fractionation model which can be used to explain both our results as well as the results of the “standard model.” Differences in fractionation with temperature relate to differences in the specific temperature response of internal enzyme kinetics as well as the exchange rates of sulfate in and out of the cell. It is expected that the kinetics of these processes will show strain-specific differences.  相似文献   
40.
The Callovo-Oxfordian claystones located at 500 m depth at Bure (Meuse, France) are currently being investigated by Andra (the French National Radioactive Waste Management Agency) for testing the feasibility of long-term and deep geological nuclear waste disposal. In order to evaluate its potential as a geological barrier, it is very important to study, assess and describe its physico-chemical variability. The molecular biomarker composition of 150 samples of these claystones and their surrounding limestones carry diverse information on the sources of the sedimentary organic matter, the chemistry of the depositional environment, the preservation and diagenesis conditions. It also allows assessing the degree of lateral and vertical variability of the organic matter within these sedimentary series. The abundance of unsaturated biomarkers, the distribution of steroids and hopanoids and CPI values >2 prove the thermal immaturity of the organic matter. The co-occurrence of plankton, bacteria and land plant biomarkers indicate that the organic matter is a mixture of marine and continental contributions. The data also reveal that the organic matter was deposited under oxic and open-sea conditions except for a brief event of photic zone anoxia at the beginning of the Middle Callovian. In the claystones, the geosynthesis of diasterenes is favored to the detriment of the formation of steranes, especially in smectite-rich levels, and the organic matter is rapidly isolated from oxidizing then reducing conditions after the deposition due to the protective effect of clays. On the scale investigated, the claystones are characterized by a unique molecular facies and are thus homogenous from their organic content point of view. Yet, detailed investigation of specific molecular families indicates changes related to major claystone–limestone transitions. The homogeneity of these claystones can be explained by the paleogeographic position of their depositional setting and the plane and sub-horizontal paleotopography on which they were deposited. This study demonstrates the efficiency of organic geochemistry in the assessment of the variability of geological barriers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号